12-16 May 2025 PARIS (France)

Submissions (by speaker) > Beedle Jason

MMS Observations of a Compressed, Highly Driven Magnetopause during the 2024 Mother's Day Storm
Jason Beedle  1@  , Kevin Genestreti  2@  , Jason Shuster  3@  , Rachel Rice  4, 5@  , Stephen Fuselier  6, 7@  , Tai Phan  8@  , Marit Oieroset  8@  , Harsha Gurram  4, 5@  , Li-Jen Chen  4@  , Karlheinz Trattner  9@  , Brandon Burkholder  4, 10@  , Andy Marshall  11@  , Daniel Gershman  4@  , Sarah Vines  6@  , Martin Lindberg  12@  , Kelly Cantwell  13@  , Jim Burch  14@  , Roy Torbert  3, 6@  
1 : University of New Hampshire
2 : Southwest Research Institute
3 : University of New Hampshire
4 : NASA Goddard Space Flight Center
5 : University of Maryland, College Park
6 : Southwest Research Institute [San Antonio]
7 : The University of Texas at San Antonio
8 : Space Sciences Laboratory, University of California, Berkeley
9 : University of Colorado, LASP, Boulder
10 : University of Maryland [Baltimore County]
11 : Earth Oceans and Space, Southwest Research Institute [Durham]
12 : Department of Physics and Astronomy, Queen Mary University of London, London, UK
13 : Department of Physics and Astronomy, Dartmouth College
14 : Southwest Research Institute, San Antonio, TX, USA

From 10-12 May, 2024, a series of coronal mass ejections led to the Mother's Day Storm, one of the strongest geomagnetic storms of the century. MMS's position on the dayside magnetosphere on 11 May allows us to report in situ observations of an extremely driven and compressed ~6 Re magnetopause boundary layer. In the boundary, MMS observed a magnetic reconnection exhaust far downstream of a primary X-line with an average normalized reconnection rate of 0.20 ± 0.05 and significant ion heating estimated to be ~ 30% of the available magnetic energy. The enhanced ion heating, 50% higher than generally expected for the driving conditions, indicates the complexity of the boundary layer where MMS not only encounters a magnetic hole and crosses the magnetopause multiple times, but also sees significantly enhanced O+ magnetospheric outflows. Together, these signatures highlight how kinetic-scale processes at the magnetopause boundary layer enable large-scale energy transfer throughout the magnetosphere.


Online user: 3 Privacy | Accessibility
Loading...